

AMD INSTINCT[™] MI100 ACCELERATOR

World's Fastest HPC GPU¹

The era of exascale is here. Immense computational power coupled with the fusion of HPC and AI is enabling researchers to tackle grand challenges once thought beyond reach.

AMD Instinct[™] MI100 accelerator is the world's fastest HPC GPU, engineered from the ground up for this new era of computing.¹ Powered by the first AMD CDNA architecture, the MI100 accelerators deliver a giant leap in compute and interconnect performance, offering a nearly 3.5x (FP32 Matrix) performance boost for HPC and a nearly 7x (FP16) performance boost for AI throughput compared to AMD's prior generation accelerators.²

Heterogenous Computing Reimagined for the Exascale Era

HPC and AI are at the dawn of a new era. Disruptive technologies are needed to drive industries forward, and AMD is at the center of this computing revolution. The AMD Instinct[™] MI100 accelerator has been designed in lock-step with AMD's award winning 2nd Gen AMD EPYC[™] processors, built on our Infinity Architecture, to deliver true heterogeneous compute capabilities for HPC and AI. Combine these innovations with our partners' system offerings and the open and portable AMD ROCm[™] programming ecosystem, and you gain access to a powerful computing solution that can meet your biggest challenges in HPC and AL.

Key Features

PERFORMANCE	
Compute Units	120
Stream Processors	7,680
Peak BFLOAT16	Up to 92.3 TFLOPS
Peak INT4 INT8	Up to 184.6 TOPS
Peak FP16	Up to 184.6 TFLOPS
Peak FP32 Matrix	Up to 46.1 TFLOPS
Peak FP32	Up to 23.1 TFLOPS
Peak FP64	Up to 11.5 TFLOPS
Bus Interface	PCIe [®] Gen 3 and Gen 4 Support ³
MEMORY	
Memory Size	32GB HBM2
Memory Interface	4,096Bits
Memory Clock	1.2 GHz
Memory Bandwidth	Up to 1.2 TB/s

ECC (Full-chip) RAS Support	Yes⁴ Yes⁵
SCALABILITY	
Infinity Fabric™ Links	3
OS Support	Linux® 64-bit
AMD ROCm [™] Compatible	Yes
DUARD DESIGN	
BOARD DESIGN Board Form Factor	Full-Height, Dual Slot
Board Form Factor	Full-Height, Dual Slot 10.5" Long
	5
Board Form Factor Length	10.5" Long

ROCm

CHOICE - Code Once, Use It Everywhere

The AMD ROCm[™] ecosystem provides a software platform that is open-source, portable and accessible for HPC and machine learning accelerated compute. The AMD ROCm platform brings developers and customers programing choice, minimalism, and a modular software development environment designed to maximize developer's productivity when working on accelerated workloads.

HPC and MACHINE LEARNING APPLICATIONS

جب الاليسي Cloud / Hyperscale

Financial

Services

`|−| |[−]| Energy

Reinforcement Life Sciences

Learning

Image | Object | Video Detection & Classification

OPEN PROGRAMING WITH CHOICE

OpenMP | HIP | OpenCL[™] | Python

OPEN FRAMEWORKS

PyTorch | TensorFlow | Kokkos | RAJA

OPTIMIZED LIBRARIES

MIOpen | FFT, RNG | BLAS, SPARSE | Eigen

PROGRAMER AND SYSTEM TOOLS

Debuggers | Performance Analysis | System Management

All-New Matrix Core Technology for Machine Learning

The AMD Instinct[™] MI100 GPU brings customers all-new Matrix Core Technology with superior performance for a full range of mixed precision operations bringing you the ability to work with large models and enhance memory-bound operation performance for whatever combination of machine learning workloads you need to deploy. The MI100 offers optimized BF16, INT4, INT8, FP16, FP32 and FP32 Matrix capabilities bringing you supercharged compute performance to meet all your Al system requirements. The AMD Instinct MI100 handles large data efficiently for training complex neural networks used in deep learning and delivers a nearly 7x boost for AI (FP16) performance compared to AMD's prior generation accelerators.²

Ultra-Fast HBM2 Memory

The AMD Instinct[™] MI100 GPU provides 32GB High-bandwidth HBM2 memory at a clock rate of 1.2 GHz and delivers an ultra-high ~1.2 TB/s of memory bandwidth to support your largest data sets and help eliminate bottlenecks in moving data in and out of memory. Combine this performance with the MI100's advanced I/O capabilities and you can push workloads closer to their full potential.⁸

For More Information Visit: amd.com/INSTINCTMI100

AMD Infinity Fabric[™] Link Technology

AMD Instinct[™] MI100 GPUs provide advanced I/O capabilities in standard off-the-shelf servers with our Infinity Fabric[™] technologies and PCIe[®] Gen4 support. The MI100 GPU delivers 64GB/s CPU to GPU bandwidth without the need for PCIe[®] switches, and up to 276 GB/s of peer-to-peer (P2P) bandwidth performance through three Infinity Fabric[™] Links designed with AMD's 2nd Gen Infinity architecture.⁷ AMD's Infinity technologies allow for platform designs with dual direct-connect quad GPU hives enabling superior P2P connectivity and delivering up to 1.1 TB/s of total theoretical GPU bandwidth within a server design.⁷

Industry's Latest PCIe[®] Gen 4.0

The AMD Instinct MI100 GPU is designed to support the latest PCIe Gen 4.0 technology which provides up to 64GB/s peak theoretical transport data bandwidth from CPU to GPU per card.

Leading FP64 Performance for HPC Workloads

The AMD Instinct[™] MI100 GPU delivers industry-leading double precision performance with up to 11.5 TFLOPS peak FP64 performance, enabling scientists and researchers across the globe to more efficiently process HPC parallel codes across several industries including life sciences, energy, finance, academics, government, defense and more.¹

1. Calculations conducted by AMD Performance Labs as of Sep 18, 2020 for the AMD Instinct⁺ M1000 (32CB HBM2 PCIe⁺ card) accelerator at 1502 MHz peak boost engine clock resulted in 11.54 TFLOP5 peak double precision (FP4), 461 TFLOP5 peak single precision (FP3), 184.6 TFLOP5 peak half precision (FP4) peak theoretical, floating-point performance. AMD TFLOP5 calculations conducted with the following equation for AMD Instinct M100 CPUs⁻ FLOP5 reak clock precision (FP4), 184.6 TFLOP5 peak half precision (FP4), 184.6 TFLOP5 peak half precision (FP4), 187.6 TML005 peak half precision (FP4), 45.1 TFLOP5 peak half preci

©2020 Advanced Micro Devices, Inc. All rights reserved, AMD, the AMD Arrow logo, AMD Instinct, Infinity Fabric, ROCm, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a registered trademark of PCI-SIG Corporation. OpenCL[®] is a registered trademark used under license by Khronos. The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. We thank the Computational Infrastructure for Geodynamics (http://geodynamics.org) which is funded by the National Science Foundation under awards EAR-0949446 and EAR-1550901.

